RCX Library Documentation for IC 4

Differences from the Handy Board.

Performance

As seen in the following graph, the Handy Board runs IC programs faster than the RCX. Running IC4 on the RCX instead of programs written in NQC will result in a great improvement in speed. If program performance is important, there are a few ways to speed up a program on the RCX, such as the setticks function, which is described later.

[image: image1.wmf]5000

integer

counts

5000

integer

multiplies

5000

integer

divides

5000 float

counts

5000 float

multiplies

5000 float

divides

5000 float

squareroot

s

5000 sen

-

sor reads

(analog

-

/light)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

RCX and HandyBoard Speed Comparison

HB (IC4)

RCX (IC4)

RCX setticks(255) (IC4)

RCX NQC (Lego)

Milliseconds

Indicators

To indicate the IC is running, and that the Handy Board has not crashed, IC will animate a beating heart in the right corner of the display. Similar to this, the RCX has a rotating disc on the right side of the display. When the RCX is busy, this disc may slow, but it should never stop. To indicate when the RCX is receiving, a small down arrow is shown on the left side of the display, and when the RCX transmits, the arrow is larger.

The RCX does not automatically run main when it is turned on. Instead, it will run main when the user presses the run button. You can also stop a running program by pressing the run button. When a program is running, the dots above the number display on the RCX will continuously fill up and empty.

Pressing view when a program is not running will cycle through the different display modes, which are the three sensor ports and the print buffer. When a sensor is being read, there will be an arrow pointing to that sensor port. When there is no arrow, the last value printf'ed is shown.

Floating Point

Currently the only supported operations and functions supported on the RCX with the current firmware are +,-,/,*, and sqrt. Sin, cos, tan, etc are not supported on the RCX.

Port Naming

On the RCX, there are three motor ports, labeled A, B, and C, and three sensor ports labeled 1, 2 and 3.

In sensor functions: 1,2,3 refer to the sensor ports.

In motor functions: A,B,C refer to the motor ports. Also, 1,2, and 3 refer to the motor ports. (A=1, etc)

Printf

The RCX cannot print long integers or floating point values. The "\n" character used on the Handy Board is not necessary on the RCX, since the display is automatically cleared ever time printf is called.

Motors

void fd(int motor)

Turns the specified motor on in the forward direction, at full power.

void bk(int motor)

Turns the specified motor on in the backward direction, at full power.

void off(int motor)

Turns the specified motor off. The motor is left floating, and is free to move.

void motor(int motor, int power)

Turns on the specified motor with the amount of power. Power is a value from -100 to 100. 100 is full forward, 0 is off, and -100 is full reverse.

void brake(int motor)

Turns the specified motor off quickly. The motor become difficult to move, like there is a brake.

void allbrake()

Turns off all the motors quickly. The motors become difficult to move.

Sensors

int prgm_button()

int view_button()

int start_button()

int stop_button()

Returns a value 1 if the button is pressed, and a 0 if the button is not pressed. Prgm_button, and view_button refer to the buttons on the RCX.

The RCX does not have a start or stop button. Start_button returns the value of view_button, and stop_button returns the value of prgm_button. These two functions are for compatibility with Handy Board programs.

int digital(int sensor)

int touch(int sensor)

Returns 1 if a digital sensor is read as on, and 0 is off. These functions are the same.

int light(int sensor)

int analog(int sensor)

Returns a value from 0 to 1024 representing the light level read by a light sensor. Higher values refer to less light, and lower values to more light. This function also turns on the LED on the light sensor. These two functions are the same.

Note: The first time this function is called, there is an 80 millisecond delay.

int light_passive(int sensor)

Returns a value from 0 to 1024 representing the light level read by a light or analog sensor. Higher values refer to less light, and lower values to more light. This function also turns off the LED on the light sensor. When using this function, the light sensor has a much lower sensitivity to light.

Note: The first time this function is called, there is an 80 millisecond delay.

int pressure(int sensor)

Returns a value from 0 to 1024 representing the amount of pressure applied to a touch sensor. The higher the value, the less the pressure.

Note: The first time this function is called, there is an 80 millisecond delay.

void enable_encoder(int sensor)

void enable_bidir_encoder(int sensor)

These functions enable a particular sensor port to act as an encoder. This is best used with the Lego rotation sensor. enable_encoder enables the sensor in unidirectional mode, where whether the sensor is rotated forwards or backwards, the sensor will always count up. This is also useful with switches, where the number of presses can be counted.

enable_bidir_encoder enables the sensor is bidirectional mode, where rotating the sensor in one direction will make the sensor value count up, and rotating in the opposite direction will make the sensor count down.

Note: When in unidirectional mode, and use for counted a switch, and Handy Board will count pressing the switch, and releasing the switch separately, where on the RCX they are counted together. This means that is a switch is pressed and released on the Handy Board, and sensor value will increase by 2, but on the RCX it will increase only by one. When using the encoder functions to count sensor presses, always use enable_encoder and not enable_bidir_encoder.

int read_encoder(int sensor)

Returns an the current count for encoder of the specified sensor port. This function works for both encoder specified by enable_encoder, and by enable_bidir_encoder.

void reset_encoder(int sensor)

Resets the count of the specified encoder to zero. Calling enable_encoder or enable_bidir_encoder when an encoder is already enabled will also reset the encoder, but slower than reset_encoder will.

void setsensorperiod(int sensor, int period)

Changes the period of automatically sampling sensor. When enable_encoder, or enable_bidir_encoder is called, IC is set up to periodically sample the encoder sensor, and determine whether to count up or down. The period is measured in instructions. A period of 10 will check the sensor after every 10th instruction is run. Setting period to 0 will stop sampling that particular sensor. By default, all periods are 0, except when an encoder is enabled, and then the period is 1. If using an encoder impacts system performance too much for your program, then calling setsensorperiod after calling enable_encoder will help by reducing the priority of the encoder.

disable_encoder(int sensor)

Disables the automatic sampling of the specified sensor. This stops the counting of encoder pulses.

Note: This only stops the background counting for a particular encoder, but will not stop the sampling that occurs during a read_encoder call. Each time read_encoder is called, the encoder sensor is still sampled, whether the encoder is enabled or not.

Multitasking

void moreticks(int ticks)

Sets how may instructions the current process may execute before giving up time to another process.

void setticks(int ticks)

Sets how many instructions the current process executes each turn.

hog_processor()

Allows a process to execute 255 more instructions before giving up processor time to another process.

Power

float battery_volts()

Returns the current battery voltage as a floating point value.

void poweroff()

Stops all motors, sensors, and turns off the RCX. The RCX will resume in the program at the next statement after the poweroff().

Note: The RCX will loose track of time while executing this function.

void reset()

Stops all processes, resets the RCX, and starts running main.

Note: This function will also reset the clock.

Advanced Functions

These functions are in rcxextra.ic.

Communication

void IRLong()

void IRShort()

These function put the RCX transmitter in either short or long range mode. Note that long range mode takes more battery power that short range.

void disableirpackets()

void enableirpackets()

Either enable or disable the reception of IR packets. When IR packets are disabled, it gives the IC program control of the transmitter. When IR packets are re-enabled, the control of the transmitter is given back to the IC Interpreter.

Note: If you disable IR packets, the computer will be unable to communicate with the RCX, unless your program later reenables IR packets. Never type disableirpackets() in the user interaction window. It will make it impossible to type enableitpackets(). Use these functions with caution.

int ready()

Returns true is there is an incoming character from IR ready, or 0 if there is no character.

int irget()

Returns a value 0 to 255 representing whatever character is ready from IR. If there is no character ready, the function returns -1.

void irsend(int c)

Transmit a charcter 0-255 over IR.

Extra Buttons

void buttoncommandsoff()

void buttoncommandson()

Turns button commands on or off. Button commands are the function of the on/off button, and the run button. Normally, pressing run will stop a running program, and off will turn the RCX off. These functions prevent that.

Note: If you call buttoncommandoff in a program, you will not be able to stop the program if something goes wrong. If you never call buttoncommandson, you will also not be able to press run to run the program again, or turn the RCX off, until you issue buttoncommandson from the user interaction window. Also, if IR packets are disabled, you will be unable to issue the command to enable buttons. Use these functions with caution.

int run()

int onoff()

These function return 1 if their corresponding button is pressed, or 0 if it is not. These buttons normally turn off the RCX or stop a running program, so these functions will not be useful unless the function buttoncommands has been called.

� EINBETTEN Chart ���

_49655276.unknown

