SRF08 Ultra sonic range finder
Technical Specification

Communication with the SRF08 ultrasonic rangefinder is viathe 12C bus. This is available on
popular controllers such as the OOPic and Samp BS2p, as well as awidevariety of micro-
controllers. To the programmer the SRF08 behaves in the same way as the ubiquitous 24xx
series egprom's, except that the 12C address is different. The default shipped address of the
SRF08is OXEQ. It can be changed by the user to any of 16 addresses EO, E2, E4, E6, ES, EA,
EC, EE, FO, F2, F4, F6, F8, FA, FC or FE, thereforeup to 16 sonar's can be used. In addition
to the above addresses, all sonar's on the 12C bus will respond to address 0 - the General
Broadcast address. This means that writing a ranging command to 12C address 0 (0x00) will
start all sonar's ranging at the same time. This should be useful in ANN Mode (See below).
The results must be read individually from each sonar's real address.

Connections

The " Do Not Connect" pin should be left unconnected. It is actually the CPU MCLR lineand
is usad onceonly in our workshop to programthe PIC16F872 on-board after assembly, and
has an internal pull-up resistor. The SCL and SDA lines should each have a pull-up resistor to
+5v somewhereon the |2C bus. You only need onepair of resistors, not apair for every
module. They are normally located with the bus master rather than the slaves. The SRF08 is
alwaysaslave - never abus mester. If you need them, | recommend 1.8k resistors. Some
modules such as the OOPic already havepull-up resistors and you do not nesd to add any
more,

+ 8y Piowar

SDA

SCL

Cia Mot Connect
v Ground

Regigers
The SRF08 gppears as aset of 36 registers.
Location Read Write
Software .
0 Revision Command Register
: Max Gain Register
1 Light Sensor (defwltBelg)
5 1st EchoHigh| RangeRegister
Byte (default 255)
3 1st Echo Low N/A

Byte

17th Echo
& HighByte N
17th Echo Low
£3) Byte N/A

Only loceions 0, 1 and 2 can be written to. Location 0 is the command register and isused to
start a ranging session. It cannot be read. Reading fromlocation 0 retums the SRF08 software
revision. By default, the ranging lasts for 65mS, but can be changed by writing to the range

register at location 2. If you do so, then you will likely need to change the analogue gain by
writing to location 1. See the Changing Range and Analogue Gain sectionsbel ow.

Locaion 1is theonboard light sensor. This data is updated every time anew ranging
command has completed and can be read when range data is read. Thenext two locations, 2
and 3, arethe 16bit unsigned result fromthe latest ranging - high byte first. The meaning of
this value depends on the command used, and is either the range in inches, ortherangein cm
or theflight time in uS. A value of zero indicaes tha no objects were detected. There are up
to afurther 16 results indicating echo's frommore distant objects.

Commands

The arethree commands to initiate a ranging (80 to 82), to retum theresult ininches,
centimeters or microseconds. There isalso an ANN mode (Artificial Neural Network) mode
which is described later and aset of commands to change the 12C address.

Command .

Decma | Hex Action
0 0x50 |RangingMode - Result ininches
81 O0x51 |RangingMode - Result in centimeters
X 0x52 |RangingMode - Result in micro-seconds
83 0x53 |ANNMode - Resultininches
A 0x54 |/ANNMode - Result in centimeters
&b Ox55 |ANNMode - Result in micro -seconds
160 OxAO |1st in sequence to change 1 2C address
165 OxA5 |3rd in sequence to change 12C address
170 OxAA |2nd in sequence to change 12C address

Ranging Mode

To inititea ranging, write one of the above commands to the command register and wait the
required amount of time for completion and read as many results as you wish. The echo buffer
is cleared at the start of each ranging. The first echo range is placed in locaions 2,3. the
second in 4,5, etc. If alocation (high and low bytes) is O, then there will be no further reading
in the rest of the registers. The default and recommended time for completion of ranging is
65MS, however you can shorten this by writing to the range register before issuing a ranging
comnang. Light sensor dataat location 1 will also have been updated after aranging
command.

ANN Mode

ANN mode (Artificial Neural Network) is designed to provide the multi echo datain away
that is essier to input to aneural network, a least | hope it is - I'venot actually done it yet.
ANN mode provides a 32 byte buffer (locations 4 to 35 inclusive) where each byte represents
the 65536uS maximumflight time divided into 32 chunks of 2048uS each -equivaentto
about 352mm of range. If an echo is received within a bytes time slat then it will be set to no-
zero, otherwiseit will be zero. So if an echo is received fromwithin the first 352mm, location
4 will be non-zero. If an object is detected 3maway the location 12 will be non-zero
(3000/352 = 8) (8+4=12). Arranging the data like this should be better for aneural net than
the other formats. The input to your nework should be O if thebyte is zero and 1 if its non-
zero. | havea SORM (Self Organizing Feature M gp) in mind for the neural net, but will
hopefully be useful for any type.

Location4 | Location5 | Location6 | Location7 Loc?ttégnSB
353 - 706 - 1058 -
0-352mm 205mm 1057 Ao sl e 67

Locaions 2,3 contain the range of the nearest object converted to inches, cmor uSand is the
same asfor Ranging Mode.

Checking for Completion of Ranging

You do nat have to useatimer on your own controller to wait for ranging to finish. You can
take advantage of the fact tha the SRFO8 will not respond to any 12C activity whilst ranging.
Therefore, if you try to read fromthe SRF08 (we usethe software revision nunmber a location
0) thenyou will get 255 (0xFF) whilst ranging. This is because the 12C data line (SDA) is
pulled high if nothing isdriving it. As soon asthe ranging is completethe SRF08 will again
respond to the 12C bus, so just kegp reading the register until its not 255 (0XFF) anymore.

You can then read the sonar data. Your controller can take advantage of this to perform other
tasks while the SRF08 is ranging.

ChangingtheRange

The maximumrange of the SRFO8 is set by an intemal timer. By default, this is 66mSor the
equivalent of 11 metres of range. This is much further than the 6 metres the SRF08 is
actually cgpableof. It is possibleto reduce the time the SRF08 listens for an echo, and hence
the range, by writing to the range register at location 2. The range can be set in steps of aout
43mm (0.043mor 1.68 inches) up to 11 metres.

Therange is ((Range Register x 43mm) + 43mm) so setting the Range Register to 0 (0x00)
gives a maximumrange of 43mm. Setting the Range Register to 1 (0x01) gives a maximum
range of 86mm. Moreusefully, 24 (0x18) gives arange of 1 metreand 140 (0x8C) is 6
metres. Setting 255 (OXFF) gives the original 11 metres (255 x43 + 43 is 11008mm). There
are two ressons you may wish to reduce the range.

1. To get at the range information quicker

2. Tobeableto firethe SRFO8 at afaster rate.

If you only wish to get at the range information abit sooner and will continue to fire the
SRF08 at 65ms of slower, then all will be well. However if you wish to fire the SRFO8 at a
faster raethan 65mS, you will definitely need to reduce the gain - see next section.
Therangeis set to maximumevery time the SRF08 is powered-up. If you need adifferent
range, change it once as part of your systeminitialization code.

AnalogueGain

Theanaloguegain register sets the Maximum gain of theanalogue stages. To set the

maxi mumgain, just write one of thesevaluesto thegain register a location 1. During a
ranging, theanalogue gain starts off at its minimumvalue of 94. This is incressed & goprox.
70uS intervals up to the maximum gain setting, set by register 1. Maximum paossiblegain is
reached after about 390mm of range. The purpose of providing alimit to the maximumagain is
to allow you to fire the sonar more rgpidly than 65mS. Since the ranging can bevery short, a
new ranging can be initiated as soon as the previous range datahas been read. A potential
hazard with this is that the second ranging may pick up adistant echo retuming fromthe
previous "ping", give afalse result of acloseby object when there is none. To reduce this
possibility, the maximumgain can be reduced to limit the modules sensitivity to the weaker
distant echo, whilst till able to detect close by objects. The maximum gain setting is stored
only in the CPU's RAM and isinitiaized to maximum on power-up, so if you only want do a
ranging every 65mS, or longer, you can ignore the Range and Gain Registers.
I\?(rjltger-‘gEffec?i/ve in Ranginrg‘]gMogeonly, i%ANN rmgg,ggain is contro(IaIged automatically.

Gain Register
Decima Hex
0x00 Set Maximum A nalogue Gain to 94
Oox01 Set Maximum A nalogue Gain to 97
ox02 Set Maximum A nalogue Gain to 100
(0°(0%] Set Maximum A nalogue Gain to 103
ox04 Set Maximum A nalogue Gain to 107
Ox05 Set Maximum A nalogue Gainto 110
0x06 Set Maximum A nalogue Gain to 114
oxQ7 Set Maximum A nalogue Gain to 118
0x08 Set Maximum A nalogue Gain to 123
0x09 Set Maximum A nalogue Gain to 128
Ox0A Set Maximum A nalogue Gain to 133
ox0B Set Maximum A nalogue Gain to 139
ox0C Set Maximum A nalogue Gain to 145
Ox0D Set Maximum A nalogue Gain to 152
OxOE Set Maximum A nalogue Gain to 159
OxOF Set Maximum A nalogue Gain to 168
0x10 Set Maximum A nalogue Gain to 177
Oox11 Set Maximum A nalogue Gain to 187
ox12 Set Maximum A nalogue Gain to 199
0x13 Set Maximum A nalogue Gain to 212
0x14 Set Maximum A nalogue Gain to 227
0x15 Set Maximum A nalogue Gain to 245
0x16 Set Maximum A nalogue Gain to 265
ox17 Set Maximum A nalogue Gain to 288
0x18 Set Maximum A nalogue Gain to 317
0x19 Set Maximum A nalogue Gain to 352
Ox1A Set Maximum A nalogue Gain to 395
0x1B Set Maximum A nalogue Gain to 450
ox1C Set Maximum A nalogue Gain to 524

Maximum Analogue Gain

BRI B0 RIBR R B bk N G GIRGRK E B 0w ~oov o vk o

29 Oox1D Set Maximum A nalogue Gain to 626
0 OX1E Set Maximum A nalogue Gain to 777
3l Ox1F Set Maximum A nalogue Gain to 1025

Note that the relationship between the Gain Register setting and the actual gain isnot alinear
one. Also there is no magic formula to say "usethis gain setting with that range setting”. It
depends on the size, shape and material of the object and what else is around in the room. Try
playing with different settings until you get the result you want. If you gppear to get false
readings, it may be echo's from previous "pings’, try going back to firing the SRF08 every
65mS or longer (dower).

If you are in any doubt about the Range and Gain Registers, remember they are automatically
set by the SRF08 to their default values when it is powered-up. You can ignore and forget
about themand the SRFO8 will work fine, detecting objects up to 6 metres away every 656mS
orslower.

Light Sensor

The SRF08 has a light sensor on-board. A reading of the light intensity is madeby the SRF08
each time aranging takes place in either Ranging or ANN Modes (The A/D conversion is
actually done just before the"ping" whilst the +/- 10v generator is stabilizing). The reading
increases as the brightness increases, so you will get a maximumyvalue in bright light and
minimumvalue in darkness. It should get closeto 2-3in conplete darkness and up to about
248 (0xF8) in bright light. The light intensity can be read fromthe Light Sensor Register at
location 1 at the same time tha you are reading the range data.

LED
Thered LED is used to flash out a code for the 12C address on power-up (see below). It dso
gives abrief flash during the" ping" whilst ranging.

Changing the |2C Bus Address

To change the 12C address of the SRF08 you must have only one sonar on the bus. Writethe
3 sequence commands in the correct order followed by the address. Example; to change the
address of asonar currently a OXEO (the default shipped address) to OxF2, write the following
to address OXEQ; (OXA 0, OXA A, OXA 5, 0xF2). These commands must be sent in the correct
sequenceto change the 12C address, additionally, No other command may beissued in the
middle of the sequence. The sequence must be sent to the command register & location 0O,
which means 4 separae writetransactions on the 12C bus. When done, you should label the
sonar with its address, however if you do forget, just power it up without sending any
commands. The SRF08 will flash its address out on the LED. One long flash followed by a
number of shorter flashes indicating its address. The flashing is terminated immediately on
sending acommand the SRF08.

Address Long Short
Decima | Hex Flash flashes
224 EO 1 0
226 E2 1 1
228 E4 1 2
230 E6 1 3
232 E8 1 4
234 EA 1 5
236 EC 1 6

238 EE 1 7
240 FO 1 8
242 F2 1 9
244 4 1 10
246 Fo 1 1
248 (23] 1 12
250 FA 1 13
252 FC 1 14
254 FE 1 15

Take carenot to set morethan onesonar to the same address, there will be a bus collision and
very unpredictableresults.

Current Consumption
Average current consumption measured on our prototype is around 12mA during ranging, and

3mA standby. The module will automatically go to standby mode after a ranging, whilst
waiting for anew command on the 12C bus. The actual measured current profile is as follows,

Operation Current | Duration
Ranging command received - Power on| 275mA 3uS
+/- 10v generator Stabilization 25MA 600uS
8 cycles of 40kHz " ping" 40mA | 200uS
, 65mS
Ranging 1ImA i
Standby 3MA | indefinite

The @ove values are for guidance only, they are not tested on production units.

Changing beam patter n and beam width

Youcan't! This isa question which crops up regularly, however there is no essy way to
reduce or change the beamwidth tha I'maware of. The beam patern of the SRF08 is conical
with the width of the beam being a function of the surface areaof the transducers and is

fixed. The beam pattern of the transducers used on the SRF08, taken from the manufacturers
daasheet, is shown below.

180

Thereismore information in the sonar fag.
Here you can have a look at the schematic

e | 1 [e] 3] a] s T s ? 8 3 18 11 12 13
weo
A s
s
C RB TRE
s 2
Ic2 4
20uee 2] ié
RC1
’ C . EE
osce RCS
] & 17 ‘ SUCC
Hs 18] ggcy el Swe L s
XT1 T mné
. PP 3 fwo aplZ
C e 5 apb
pp2 (23
8_fuss pp3 (22 s
TEIV pBa(ES
rBS |26 s
uec
D i%RCE/SCL R |2
(] = RC4-SDR RAL L= EINE
—l L zlrmepoe pao |2 &
— PLL | JEREE] e
| 1 imR padl 6 ‘
[y
E PIC16FE72
¥ o L BLz) Els
R3 @
=
STE38Ch
uce
ﬁnm e HE 5
Tl
1é e —3 Tl 1: ; | 3 I8
—— — T2 — Tx2 T 1 28R
8 STE S 5 Range 3cm - &M . —
=5 =g <
— CTE Alea - L\je =)
6 u- e 2
H TCT
T oTE s H
1EIBIF\ F11 RrlE
I
DEUANTECH LTD
DESIGN B¥: Gerry Comercial FL‘,ISEhDB" tthdls desiagn
13 rohiblite
1 [DRAWN BY: Gerry €1 Copuright Dewantech Ltd 2881 ‘ SQF@ 8
Educational and Hpbby use
DATE : 02 Nowember 2081 only is permitted
8 1 2 3 4 5 6 ? B 3 1 [1] 12]

and here is the software

HHHTTHTTT T T T

I

I SRF08 Ultrasonic rangefinder Software - Preliminary
I

I Written by Gerald Coe - November 2001

I
/I (C) Copyright Devantech Ltd 2001
I Commercial use of this software is prohibited.

Il Private and Educational useonly is permitted
;5///////////////////////////////////// I

Z Sonar uses one of 16 addresses -> 0xe0 - Oxfe

/I Bit O isalways zero - itsthe i2c rd/wr bit
;5//

Z This software is written for the HITECH PICC C compiler
;5//

#include"pic.h"

#defineversion 1 I/ softwareversion
#defineecho RA2 /1 1st stage echo line
#defineled RB4 /l'lowto light led
#definepot_ud RCO /1 Pot up/dw control
#definepot_cs RC1 /1 Pot chip select control
#define anpower RC2 // analog power -lowon
#definetxpower RC5 /Il T power -low on
#defineclamp RC6 I/ comparator clamp

#defineclamp_ en TRISC6 /I comparator clamp enable
#define detect RC7

Il initialise the egprom with Oxeai2c address

/1 the default shipping address is Oxe0, our test jig

I/ will change the addressto Oxe0

__ EEPROM _DATA (Oxff, Oxff, Oxff, OXff, OXff, Oxea, OXff, OXFf);

I/ prototypes

voidsetup(void);

void burst(void);

void multi_range(void);
voidann_range(void);

void set_bit(unsigned char idx);

voidflash_addr(void);

void convert(unsigned char cmd, unsigned char idx);

// global variables

char buffer[36];

char loop, dlyctr,;

bit timeout;

unsigned char command, index;
unsigned char gain, gainant;

/ theinterrupt
void interrupt the_only_one(void)

{
static char idx=0, wr_addr=0;

//'12C interrupt

/llow = address

/I high =read fromthis
// send data

// limit index to 32 bytes
Il release 12C clock

/] read incoming data
/I 1st byte written is intemal

/I lower 4 bits only (0-35 index)
// limit index

if(ildx==0&& wr_addr==3) { // register O is start ping command
command=i2c_daa;

chari2c_data;
if(SSPIF) {
SSPIF=0;
iflSTAT_DA){
wr_addr=0;
}
if(STAT_RW){
program
SSPBUF = buffer[idx];
if(idx<36) ++idx;
CKP=1,
line
}
elsef
i2c_data= SSPBUF;
wr_addr++;
if(wr_addr==2){
location
idx=i2c_daa
if(idx>35) idx=35;
}
elsef
}
}
}
SSPOV =0,
}
if(TMR1IF==1) {
timeout = 1;

TMR1ON =0;

/I timerlis theecho timer
/I end of echo timing when it rollsover

TMRI1IF=0;

void main(void)

{

static unsigned char seq=0;

setup();

flash_addr();

while(1) {

while(!command);

timeout = 1;
TMRI1ON =0;
TMR1IF=0;

switch(command) {

case 0x00:
case Ox01.
case 0x02:
case 0x03:
case 0x04.
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:

case Ox0A:
case Ox0B:
case Ox0C:
case OxOD:
case OxOE:

case OxOF:
case 0x10:
case Ox11:
case Ox12:
case Ox13:
case Ox14.
case Ox15:
case 0x16:
case Ox17:
case 0x18:
case 0x19:

case Ox1A:
case Ox1B:
case Ox1C:
case Ox1D:

/linitialise the peripheras
Il flash the 12C addresson LED

/1 wait for start command

/I end of echo timing when new command arrives

/I Gain commands to limit max gain in
/I RangeMode

caxe Ox1E:

cae0x1F. gain =command,;
break;
case 0x80: I
inches, centimetres or uS
case Ox81:
cae0x82: multi_range(); I/ 2byte multi-pingdata
seq =0,
/1 reset address change sequence
break;
case 0x83:
case Ox84:
cae0x85: ann_range(); I 2byte 1<t, 1byte multi-
pings
seq =0,
/1 reset address change sequence
break;
caeOxad: seq=1; I/ start of
sequenceto change address
break;
caseOxaa if(seg==1) ++s; /1 2nd of sequence to
changeaddress
elseseq =0;
break;
caeOxab: if(seg==2) ++s; /1 3rd of sequence to change
address
elseseq =0;
break;
case OxeO: /1 if seg=3 user is changing sonar 12C
address
case Oxe2:
case Oxed:
case Oxeo:
case Oxes:
caseOxea
case Oxec:
caseOxee:
case OxfO:
case Oxf2:
case 0xf4:
case Oxf6:
case Oxf8:
case Oxfa
case Oxfc:
case Oxfe: if(seg==3){

EEPROM_WRITE(5, command);
SSPADD = command;
led=0;

seq=0;

}
command =0;
anpower =1,
power off
}
}

break;

// analog

I T

/I The burst routine generates an acurately timed 40khz burst of 8 cycles.
/I Timing assumes an 8Mhz PIC (500nS instruction rae)

/'l drop down to assembler herebecause | don't trust the compiler to

/I always generate accurately timed code with different versions or

// optimisation settings

I

void burst(void) {

char x;

clamp=0
clamp_en=0;

pot_cs=1;
led=0;
GIE=0;

accuracy

#asm

burstl:

txpower = 0;

anpower =0;

loop=8;

pot ud=1;

x=0;

while(-Xx);

pot_cs=0;

for(x=2; x<36; x++) {
pot ud=0;
buffer[X] = 0;
pot ud=1;

}

clamp en=1,

ADGO=1,;

pot cs=1;
while(ADGO);
pot ud=0;

buffer[1] = ADRESH;

moviw 0ox14

/I force low on clamp line

/] deselect pot
/lon
// disable interrupts for timing

// tum st232 on

// tum analog power on
// number of cycles in burst
/1 select pot inc mode

// wait for +/ - 10v to charge up.
/I enable pot

/I and take opportunity to clear echo buffer
// and reset pot wiper

/I relesseclanmp line

/I convert light sensor
// deselect pot

/1 select pot dec mode
/1 store light sensor reading

; 1st half cycle

movwf _PORTB

nop
moviw 7 ; (7* 3inst* 500nS) -
500nS=10uS
movwf _dlyctr ; 10uS + (5*500nS) = 12.5uS
burst2: decfsz _dlyctr,f
goto burst2
moviw 0x18 ; 2nd half cy de
movwf _PORTB
moviw 6 ; (6* 3inst* 500nS) -
500nS=8.5uS
movwf _dlyctr ; 8.5US + (8*500nS) = 12.5uS
burst3: decfsz _dlyctr.f
goto burst3
nop
decfsz _loop,f
goto burstl
moviw 0x10 ; set both drives low
movwi _PORTB
#endasm
GIE=1,
txpower = 1; /I tum st232 off
led=1; I Led off
pot_cs=0; /I enable pot
}

o
void multi_range(void) {
unsigned chartone_cnt, period, cmd;
burst(); /1 send 40khz burst, reset pot wiper and clear buffer

cmd = command; /1 save crmd so we know how to convert result
TMRO=0;
TMRIH =0;
TMRIL =0;
timeout = 0;
tone cnt=3;
index=2;
TMRION =1;
TMR2=0;
TMR2IF=0;
gaincnt =gain;

while(timeout==0) {
stage3
while(timeout==0 & & echo==0) {

if(TMR2IF && gaincnt) {
pot ud=1;
—gaincnt;
TMR2IF=0;
pot ud=0;

}

while(timeout==0 & & echo==1) {
if(TMR2IF && gaincnt) {
pot ud=1;
—gaincnt;
TMR2IF=0;
pot ud=0;

}

if (timeout==0) {
period=TMRO;
TMRO=0;

if(period>40 & & period<60) {

if(!(~tone_cnt)) {
do{

I/ while still timing

I/ wait for high

/l wait for low

about 5 inches of range

buffer[index] = TMR1H;
buffer[index+1] = TMRIL;
}while(buffer[index] '= TMR1H);
convert(cmd, index); /I convertto in, cmor uS
if(index == 36) return;
index +=2;
tone cnt=3;
period=0;
while(—period){ /ldelay

if(TMR2IF && gaincnt) {
pot ud=1;
—gaincnt;
TMR2IF=0;
pot ud=0;

}

}
while(-—period){
if(TMR2IF && gaincnt) {
pot ud=1;
—gaincnt;
TMR2IF=0;
pot ud=0;

while(-—period){
if(TMR2IF && gaincnt) {

pot ud=1;
—gaincnt;
TMR2IF=0;
pot ud=0;
}
}
}
}
elsetone _cnt=3;
}
}
}
T T n§
void ann_range(void) {
unsigned chartone_cnt, period, index, cmd;
burst(); // send 40khz burst and clear buffer
cmd = command, /l save cmd so we know how to convert result
TMRO=0;
TMR1IH =0;
TMRI1L =0;
timeout = 0;
tone cnt=3;
index =2
TMRI1ON = 1;
while(timeout==0) { // while still timing
stage3
while(timeout==0 & & echo==0) { I/ wait for high
if(TMR2IF) {
pot ud=1;
TMR2IF=0;
pot ud=0;
} }
while(timeout==0 & & echo==1) { // wait for low
if(TMR2IF) {
pot ud=1;
TMR2IF=0;
pot ud=0;
}

if (timeout==0) {
period = TMRO;
TMRO=0;
if(period>40 & & period<60) {
if(!(—-tone_cnt)) {
st bit(TMR1H);

if(index==2) { /lonly 1st echoin
annmode
do{
buffer[index] = TMR1H;
buffer[index+1] = TMRIL;
}while(buffer[index] '= TMR1H);
convert(cmd, index); /I convertto in, cm
orus
index +=2;
}
tone cnt=1; /I to detect
continuing echo
}
elsetone _cnt=3;
}
}
}
void se_bit(unsigned char idx)
{
char pos,
pos=idx&7; /I lower 3 bits indicate bit position
idx = (idx>>3)+4; // index into buffer
switch(pos) {
case0: buffer[idx] |= 0x01,;
break;
casel: buffer[idx] |- 0x02;
break;
case2: buffer[idx] |- Ox04;
break;
case3: buffer[idx] |= 0x08;
break;
case4: buffer[idx] |- 0x10;
break;
case5: buffer[idx] |= 0x20;
break;
case6: buffer[idx] |= 0x40;
break;
case7: buffer[idx] |= 0x80;
break;

I T

void convert(unsigned char cmd, unsigned char idx)

{
unsignedint x;
x = (buffer[idx]<<8) + buffer[idx+1];
switch(cmd) {
case 0x80:
cae0x83: x /=148, /I convert to inches
break;
case Ox81:
cae0x84: x/=58; /I convertto cm
}
buffer[idx] = x>>8§;
buffer[idx+1] = x& 0Xf; /1 replaceuS with inches, cmor uS
}
W e |
voidsetup(void)
Il _ CONFIG(0x0d42); /I code protected, hs osc
__ CONFIG(0x3d72); /I code not protected, hs osc
ADCON1 = 0x0e, /I PortA Oisanalog, rest aredigital
ADCONO =0x41; // convertchO
PORTC = Oxff; /I nathing powered at start
TRISA = Oxff; /I All inputs
TRISB = 0xc3; // 11000011 PB7,6,1,0 areinputs, rest are
outputs
TRISC =0x18; // 00011000 RC3,4 areinputs
OPTION = 0x08; /Il portb pullups on, prescaler to wdt
T1CON = 0x10; /I timerl prescale 1:2, but not started yet
T2CON = 0x04; /1 1:4 prescale and running
I T2CON = 0x06; /1 1:16 prescale and running
PR2 = 140; I/ set TMR2IF every 280uS at 8VIHz
SSPSTAT = 0x80; I/ slew ratedisebled
SSPCON = 0x36; /I enable port in 7bit slave mode
SSPCON2 = 0x80; /I enable general call (address 0)
SSPADD =EEPROM_READ(5); // address OxEQ - OXFE
if(SSPADD<OxEQ)

SSPADD=0xEQ; /1 protection against corrupted eeprom

else SSPADD & = Oxfe;

buffer[0] = version; /1 software revision

SSPIE=1; I/ enable 12C interrupts
TMRI1E=1; /I enabletimerl interrupts
TMRUF=0;

SSPIF=0;

PEIE=1; /] enable peripheal interrupts
GIEE=1; /I enableglobal interrupts
gan=32; [maximum gain at power-up

I T T

voidflash_addr(void)
{

unsigned char count;
long delay, on, off;

on = off = 30000;

count = ((SSPADD>>1)& 0x0f)+1;
do{
delay = on;
on = 10000;
led =0; /ledon
while(-delay) if(command) return;
delay = off;
off =20000;
led=1; /1 led of f
while(-delay) if(command) return;

\}/vhile(--count);

I T T

