
SRF08 Ultra sonic range finder
Technical Specification

Communication with the SRF08 ultrasonic rangefinder is via the I2C bus. This is available on
popular controllers such as the OOPic and Stamp BS2p, as well as a wide variety of micro-
controllers. To the programmer the SRF08 behaves in the same way as the ubiquitous 24xx
series eeprom's, except that the I2C address is different. The default shipped address of the
SRF08 is 0xE0. It can be changed by the user to any of 16 addresses E0, E2, E4, E6, E8, EA,
EC, EE, F0, F2, F4, F6, F8, FA, FC or FE, therefore up to 16 sonar's can be used. In addition
to the above addresses, all sonar's on the I2C bus will respond to address 0 - the General
Broadcast address. This means that writing a ranging command to I2C address 0 (0x00) will
start all sonar's ranging at the same time. This should be useful in ANN Mode (See below).
The results must be read individually from each sonar's real address.

Connections
The "Do Not Connect" pin should be left unconnected. It is actually the CPU MCLR line and
is used once only in our workshop to program the PIC16F872 on-board after assembly, and
has an internal pull-up resistor. The SCL and SDA lines should each have a pull-up resistor to
+5v somewhere on the I2C bus. You only need one pair of resistors, not a pair for every
module. They are normally located with the bus master rather than the slaves. The SRF08 is
always a slave - never a bus master. If you need them, I recommend 1.8k resistors. Some
modules such as the OOPic already have pull-up resistors and you do not need to add any
more.

Registers
 The SRF08 appears as a set of 36 registers.

Location Read Write

0 Software
Revision Command Register

1 Light Sensor Max Gain Register
(default 31)

2 1st Echo High
Byte

Range Register
(default 255)

3 1st Echo Low
Byte N/A


~~~~ ~~~~ ~~~~ 

34 17th Echo 
High Byte N/A 

35 17th Echo Low 
Byte N/A 

Only locations 0, 1 and 2 can be written to. Location 0 is the command register and is used to 
start a ranging session. It cannot be read. Reading from location 0 returns the SRF08 software 
revision.  By default, the ranging lasts for 65mS, but can be changed by writing to the range 
register at location 2. If you do so, then you will likely need to change the analogue gain by 
writing to location 1. See the Changing Range  and Analogue Gain sections below.  

Location 1 is the onboard light sensor. This data is updated every time a new ranging 
command has completed and can be read when range data is read. The next two locations, 2 
and 3, are the 16bit unsigned result from the latest ranging - high byte first. The meaning of 
this value depends on the command used, and is either the range in inches, or the range in cm 
or the flight time in uS. A value of zero indicates that no objects were detected. There are up 
to a further 16 results indicating echo's from more distant objects.  

Commands  
The are three commands to initiate a ranging (80 to 82), to return the result in inches, 
centimeters or microseconds. There is also an ANN mode (Artificial Neural Network) mode 
which is described later and a set of commands to change the I2C address. 

Command 
Decimal Hex 

Action 

80 0x50 Ranging Mode - Result in inches  
81 0x51 Ranging Mode - Result in centimeters 
82 0x52 Ranging Mode - Result in micro -seconds  
      

83 0x53 ANN Mode - Result in inches  
84 0x54 ANN Mode - Result in centimeters 
85 0x55 ANN Mode - Result in micro -seconds 
      

160 0xA0 1st in sequence to change I2C address  
165 0xA5 3rd in sequence to change I2C address 
170 0xAA 2nd in sequence to change I2C address 

Ranging Mode 
To initiate a ranging, write one of the above commands to the command register and wait the 
required amount of time for completion and read as many results as you wish. The echo buffer 
is cleared at the start of each ranging. The first echo range is placed in locations 2,3. the 
second in 4,5, etc. If a location (high and low bytes) is 0, then there will be no further reading 
in the rest of the registers. The default and recommended time for completion of ranging is 
65mS, however you can shorten this by writing to the range register before issuing a ranging 
command. Light sensor data at location 1 will also have been updated after a ranging 
command.  



ANN Mode 
ANN mode (Artificial Neural Network) is designed to provide the multi echo data in a way 
that is easier to input to a neural network, at least I hope it is - I've not actually done it yet. 
ANN mode provides a 32 byte buffer (locations 4 to 35 inclusive) where each byte represents 
the 65536uS maximum flight time divided into 32 chunks of 2048uS each - equivalent to 
about 352mm of range. If an echo is received within a bytes time slot then it will be set to no-
zero, otherwise it will be zero. So if an echo is received from within the first 352mm, location 
4 will be non-zero. If an object is detected 3m away the location 12 will be non-zero 
(3000/352 = 8) (8+4=12). Arranging the data like this should be better for a neural net than 
the other formats. The input to your network should be 0 if the byte is zero and 1 if its non-
zero. I have a SOFM (Self Organizing Feature Map) in mind for the neural net, but will 
hopefully be useful for any type.  

Location 4 Location 5 Location 6 Location 7 Locations 8 
- 35 

0 - 352mm 353 - 
705mm 

706 - 
1057mm 

1058 - 
1410mm and so on 

Locations 2,3 contain the range of the nearest object converted to inches, cm or uS and is the 
same as for Ranging Mode.  

Checking for Completion of Ranging  
You do not have to use a timer on your own controller to wait for ranging to finish. You can 
take advantage of the fact that the SRF08 will not respond to any I2C activity whilst ranging. 
Therefore, if you try to read from the SRF08 (we use the software revision number a location 
0) then you will get 255 (0xFF) whilst ranging. This is because the I2C data line (SDA) is 
pulled high if nothing is driving it. As soon as the ranging is complete the SRF08 will again 
respond to the I2C bus, so just keep reading the register until its not 255 (0xFF) anymore. 
You can then read the sonar data. Your controller can take advantage of this to perform other 
tasks while the SRF08 is ranging.  

Changing the Range  
The maximum range of the SRF08 is set by an internal timer. By default, this is 65mS or the 
equivalent of 11 metres of range. This is much further than the 6 metres the SRF08  is 
actually capable of. It is possible to reduce the time the SRF08 listens for an echo, and hence 
the range, by writing to the range register at location 2. The range can be set in steps of about 
43mm (0.043m or 1.68 inches) up to 11 metres.  
The range is ((Range Register x 43mm) + 43mm) so setting the Range Register to 0 (0x00) 
gives a maximum range of 43mm. Setting the Range Register to 1 (0x01) gives a maximum 
range of 86mm. More usefully, 24 (0x18) gives a range of 1 metre and 140 (0x8C) is 6 
metres. Setting 255 (0xFF) gives the original 11 metres (255 x 43 + 43 is 11008mm). There 
are two reasons you may wish to reduce the range. 
1. To get at the range information quicker 
2. To be able to fire the SRF08 at a faster rate. 
If you only wish to get at the range information a bit sooner and will continue to fire the 
SRF08 at 65ms of slower, then all will be well. However if you wish to fire the SRF08 at a 
faster rate than 65mS, you will definitely need to reduce the gain - see next section. 
The range is set to maximum every time the SRF08 is powered-up. If you need a different 
range, change it once as part of your system initialization code. 



Analogue Gain 
The analogue gain register sets the Maximum gain of the analogue stages. To set the 
maximum gain, just write one of these values to the gain register at location 1. During a 
ranging, the analogue gain starts off at its minimum value of 94. This is increased at approx. 
70uS intervals up to the maximum gain setting, set by register 1. Maximum possible gain is 
reached after about 390mm of range. The purpose of providing a limit to the maximum gain is 
to allow you to fire the sonar more rapidly than 65mS. Since the ranging can be very short, a 
new ranging can be initiated as soon as the previous range data has been read. A potential 
hazard with this is that the second ranging may pick up a distant echo returning from the 
previous "ping", give a false result of a close by object when there is none. To reduce this 
possibility, the maximum gain can be reduced to limit the modules sensitivity to the weaker 
distant echo, whilst still able to detect close by objects. The maximum gain setting is stored 
only in the CPU's RAM and is initialized to maximum on power-up, so if you only want do a 
ranging every 65mS, or longer, you can ignore the Range and Gain Registers. 
Note - Effective in Ranging Mode only, in ANN mode, gain is controlled automatically.  

Gain Register  
Decimal Hex 

Maximum Analogue Gain 

0 0x00 Set Maximum Analogue Gain to 94 
1 0x01 Set Maximum Analogue Gain to 97 
2 0x02 Set Maximum Analogue Gain to 100 
3 0x03 Set Maximum Analogue Gain to 103 
4 0x04 Set Maximum Analogue Gain to 107 
5 0x05 Set Maximum Analogue Gain to 110 
6 0x06 Set Maximum Analogue Gain to 114 
7 0x07 Set Maximum Analogue Gain to 118 
8 0x08 Set Maximum Analogue Gain to 123 
9 0x09 Set Maximum Analogue Gain to 128 
10 0x0A Set Maximum Analogue Gain to 133 
11 0x0B Set Maximum Analogue Gain to 139 
12 0x0C Set Maximum Analogue Gain to 145 
13 0x0D Set Maximum Analogue Gain to 152 
14 0x0E Set Maximum Analogue Gain to 159 
15 0x0F Set Maximum Analogue Gain to 168 
16 0x10 Set Maximum Analogue Gain to 177 
17 0x11 Set Maximum Analogue Gain to 187 
18 0x12 Set Maximum Analogue Gain to 199 
19 0x13 Set Maximum Analogue Gain to 212 
20 0x14 Set Maximum Analogue Gain to 227 
21 0x15 Set Maximum Analogue Gain to 245 
22 0x16 Set Maximum Analogue Gain to 265 
23 0x17 Set Maximum Analogue Gain to 288 
24 0x18 Set Maximum Analogue Gain to 317 
25 0x19 Set Maximum Analogue Gain to 352 
26 0x1A Set Maximum Analogue Gain to 395 
27 0x1B Set Maximum Analogue Gain to 450 
28 0x1C Set Maximum Analogue Gain to 524 



29 0x1D Set Maximum Analogue Gain to 626 
30 0x1E Set Maximum Analogue Gain to 777 
31 0x1F Set Maximum Analogue Gain to 1025 

Note that the relationship between the Gain Register setting and the actual gain is not a linear 
one. Also there is no magic formula to say "use this gain setting with that range setting". It 
depends on the size, shape and material of the object and what else is around in the room. Try 
playing with different settings until you get the result you want. If you appear to get false 
readings, it may be echo's from previous "pings", try going back to firing the SRF08 every 
65mS or longer (slower).  
If you are in any doubt about the Range and Gain Registers, remember they are automatically 
set by the SRF08 to their default values when it is powered-up. You can ignore and forget 
about them and the SRF08 will work fine, detecting objects up to 6 metres away every 65mS 
or slower. 

Light Sensor  
The SRF08 has a light sensor on-board. A reading of the light intensity is made by the SRF08 
each time a ranging takes place in either Ranging or ANN Modes ( The A/D conversion is 
actually done just before the "ping" whilst the +/- 10v generator is stabilizing). The reading 
increases as the brightness increases, so you will get a maximum value in bright light and 
minimum value in darkness. It should get close to 2-3 in complete darkness and up to about 
248 (0xF8) in bright light. The light intensity can be read from the Light Sensor Register at  
location 1 at the same time that you are reading the range data. 

LED 
The red LED is used to flash out a code for the I2C address on power-up (see below). It also 
gives a brief flash during the "ping" whilst ranging. 

Changing the I2C Bus Address  
To change the I2C address of the SRF08 you must have only one sonar on the bus. Write the 
3 sequence commands in the correct order followed by the address. Example; to change the 
address of a sonar currently at 0xE0 (the default shipped address) to 0xF2, write the following 
to address 0xE0; (0xA0, 0xAA, 0xA5, 0xF2 ). These commands must be sent in the correct 
sequence to change the I2C address, additionally, No other command may be issued in the 
middle of the sequence. The sequence must be sent to the command register at location 0, 
which means 4 separate write transactions on the I2C bus. When done, you should label the 
sonar with its address, however if you do forget, just power it up without sending any 
commands. The SRF08 will flash its address out on the LED. One long flash followed by a 
number of shorter flashes indicating its address. The flashing is terminated immediately on 
sending a command the SRF08. 

Address  
Decimal Hex 

Long 
Flash 

Short 
flashes  

224 E0 1 0 
226 E2 1 1 
228 E4 1 2 
230 E6 1 3 
232 E8 1 4 
234 EA 1 5 
236 EC 1 6 



238 EE 1 7 
240 F0 1 8 
242 F2 1 9 
244 F4 1 10 
246 F6 1 11 
248 F8 1 12 
250 FA 1 13 
252 FC 1 14 
254 FE 1 15 

Take care not to set more than one sonar to the same address, there will be a bus collision and 
very unpredictable results. 

Current Consumption 
Average current consumption measured on our prototype is around 12mA during ranging, and 
3mA standby. The module will automatically go to standby mode after a ranging, whilst 
waiting for a new command on the I2C bus. The actual measured current profile is as follows;  

Operation Current  Duration 
Ranging command received - Power on 275mA 3uS 

+/- 10v generator Stabilization  25mA 600uS 
8 cycles of 40kHz "ping" 40mA 200uS 

Ranging 11mA 65mS 
max 

Standby 3mA indefinite 

The above values are for guidance only, they are not tested on production units.  

Changing beam pattern and beam width 
You can't!  This is a question which crops up regularly, however there is no easy way to 
reduce or change the beam width that I'm aware of. The beam pattern of the SRF08 is conical 
with the width of the beam being a function of the surface area of the transducers and is 
fixed.  The beam pattern of the transducers used on the SRF08, taken from the manufacturers 
data sheet, is shown below. 



 

There is more information in the sonar faq. 
Here you can have a  look at the schematic 

  

 



and here is the software 

 
//////////////////////////////////////////////////////////////////////////// 
// 
// SRF08 Ultrasonic rangefinder Software - Preliminary 
// 
// Written by Gerald Coe - November 2001 
// 
// (C) Copyright Devantech Ltd 2001 
// Commercial use of this software is prohibited. 
// Private and Educational use only is permitted 
// 
////////////////////////////////////////////////////////////////////////////  
// 
// Sonar uses one of 16 addresses -> 0xe0 - 0xfe  
// Bit 0 is always zero - its the i2c rd/wr bit 
// 
//////////////////////////////////////////////////////////////////////////// 
// 
// This software is written for the HITECH PICC C compiler 
// 
//////////////////////////////////////////////////////////////////////////// 
 
 
#include "pic.h"  
 
#define version 1   // software version 
#define echo   RA2  // 1st stage echo line 
#define led   RB4  // low to light led 
#define pot_ud  RC0  // Pot up/dw control 
#define pot_cs  RC1  // Pot chip select control 
#define anpower RC2  // analog power - low on  
#define txpower  RC5  // Tx power - low on 
#define clamp  RC6  // comparator clamp  
#define clamp_en TRISC6 // comparator clamp enable 
#define detect  RC7 
 
 
// initialise the eeprom with 0xea i2c address  
// the default shipping address is 0xe0, our test jig 
// will change the address to 0xe0 
__EEPROM_DATA (0xff, 0xff, 0xff, 0xff, 0xff, 0xea, 0xff, 0xff); 
 
 
// prototypes  
void setup(void ); 
void burst(void);  
void multi_range(void);  
void ann_range(void);  
void set_bit(unsigned char idx); 



void flash_addr(void);  
void convert(unsigned char cmd, unsigned char idx); 
 
 
// global variables 
char buffer[36];  
char loop, dlyctr; 
bit timeout;  
unsigned char command, index; 
unsigned char gain, gaincnt; 
 
 
// the interrupt  
void interrupt the_only_one(void)  
{ 
static char idx=0, wr_addr=0;  
char i2c_data;  
 
 if(SSPIF) {       // I2C interrupt 
  SSPIF = 0;  
 
  if(!STAT_DA) {     // low = address  
   wr_addr=0; 
  } 
  if(STAT_RW) {     // high = read from this 
program 
   SSPBUF = buffer[idx];  // send data 
   if(idx<36) ++idx;   // limit index to 32 bytes  
   CKP = 1;       // release I2C clock 
line 
  } 
  else {  
   i2c_data = SSPBUF;  // read incoming data 
   wr_addr++; 
   if(wr_addr==2) {    // 1st byte written is internal 
location 
    idx = i2c_data;  // lower 4 bits only (0-35 index) 
    if(idx>35) idx=35;  // limit index 
   } 
   else {  
    if(idx==0 && wr_addr==3) { // register 0 is start ping command 
     command=i2c_data;  
    } 
   } 
  } 
  SSPOV = 0;  
 } 
 
 if(TMR1IF==1) {   // timer1 is the echo timer 
  timeout = 1;   // end of echo timing when it rolls over 
  TMR1ON = 0;   



  TMR1IF = 0;  
 } 
} 
 
 
 
void main(void) 
{ 
static unsigned char seq=0; 
 
 setup();      // initialise the peripherals  
 flash_addr();    // flash the I2C address on LED 
 
 while(1) { 
  while(!command);  // wait for start command 
 
  timeout = 1;   // end of echo timing when new command arrives 
  TMR1ON = 0;   
  TMR1IF = 0;  
 
  switch(command) { 
   case 0x00:   // Gain commands to limit max. gain in 
   case 0x01:   // Range Mode 
   case 0x02: 
   case 0x03: 
   case 0x04: 
   case 0x05: 
   case 0x06: 
   case 0x07: 
   case 0x08: 
   case 0x09: 
   case 0x0A: 
   case 0x0B: 
   case 0x0C: 
   case 0x0D: 
   case 0x0E: 
   case 0x0F: 
   case 0x10: 
   case 0x11: 
   case 0x12: 
   case 0x13: 
   case 0x14: 
   case 0x15: 
   case 0x16: 
   case 0x17: 
   case 0x18: 
   case 0x19: 
   case 0x1A: 
   case 0x1B: 
   case 0x1C: 
   case 0x1D: 



   case 0x1E: 
   case 0x1F:  gain = command; 
       break; 
    
   case 0x80:        // 
inches, centimetres or uS  
   case 0x81: 
   case 0x82: multi_range();   // 2byte multi-ping data 
       seq = 0;    
 // reset address change sequence 
       break; 
   case 0x83: 
   case 0x84: 
   case 0x85: ann_range();    // 2byte 1st, 1byte multi-
pings  
       seq = 0;    
 // reset address change sequence 
       break; 
   case 0xa0: seq = 1;     // start of 
sequence to change address 
       break; 
   case 0xaa:  if(seq==1) ++seq;  // 2nd of sequence to 
change address  
       else seq = 0; 
       break; 
   case 0xa5: if(seq==2) ++seq;  // 3rd of sequence to change 
address 
       else seq = 0; 
       break; 
   case 0xe0:   // if seq=3 user is changing sonar I2C 
address 
   case 0xe2: 
   case 0xe4: 
   case 0xe6: 
   case 0xe8: 
   case 0xea: 
   case 0xec: 
   case 0xee: 
   case 0xf0: 
   case 0xf2: 
   case 0xf4: 
   case 0xf6: 
   case 0xf8: 
   case 0xfa: 
   case 0xfc: 
   case 0xfe: if(seq==3) {  
        EEPROM_WRITE(5, command);  
        SSPADD = command;  
        led = 0;  
       } 
       seq = 0;  



       break; 
  }    
 
  command = 0;  
  anpower = 1;        // analog 
power off  
 }  
} 
 
 
 
//////////////////////////////////////////////////////////////////////////// 
 
// The burst routine generates an acurately timed 40khz burst of 8 cycles. 
// T iming assumes an 8Mhz PIC (500nS instruction rate)  
// I drop down to assembler here because I don't trust the compiler to  
// always generate accurately timed code with different versions or 
// optimisation settings  
// 
void burst(void) { 
 
char x; 
 clamp = 0;  
 clamp_en = 0;    // force low on clamp line 
   
 pot_cs = 1;     // deselect pot 
 led = 0;      // on 
 GIE = 0;       // disable interrupts for timing 
accuracy 
 txpower = 0;    // turn st232 on 
 anpower = 0;    // turn analog power on 
 loop = 8;      // number of cycles in burst 
 pot_ud = 1;     // select pot inc mode 
 x = 0;   
 while(--x);     // wait for +/ - 10v to charge up. 
 pot_cs = 0;     // enable pot 
 for(x=2; x<36; x++) {  // and take opportunity to clear echo buffer 
  pot_ud = 0;    // and reset pot wiper 
  buffer[x] = 0; 
  pot_ud = 1;  
 } 
 clamp_en = 1;    // release clamp line 
   
 ADGO = 1;      // convert light sensor 
 pot_cs = 1;     // deselect pot 
 while(ADGO); 
 pot_ud = 0;     // select pot dec mode 
 buffer[1] = ADRESH;   // store light sensor reading 
   
#asm 
burst1: movlw  0x14   ; 1st half cycle  



   movwf  _PORTB 
   nop 
  
   movlw  7    ; (7 * 3inst * 500nS) -
500nS = 10uS  
   movwf  _dlyctr  ; 10uS + (5*500nS) = 12.5uS 
burst2: decfsz _dlyctr,f 
   goto  burst2 
   
   movlw  0x18   ; 2nd half cycle 
   movwf  _PORTB 
   
   movlw  6    ; (6 * 3inst * 500nS) -
500nS = 8.5uS  
   movwf  _dlyctr  ; 8.5uS + (8*500nS) = 12.5uS 
burst3: decfsz _dlyctr,f 
   goto  burst3 
   nop 
   decfsz _loop,f 
   goto  burst1 
   
   movlw  0x10   ; set both drives low 
   movwf  _PORTB 
#endasm 
 GIE = 1;  
 txpower = 1;    // turn st232 off 
 led = 1;      // Led off 
 pot_cs = 0;     // enable pot 
} 
 
 
//////////////////////////////////////////////////////////////////////////// 
 
void multi_range(void) { 
 
unsigned char tone_cnt, period, cmd; 
 
 burst();   // send 40khz burst, reset pot wiper and clear buffer 
 
 cmd = command;  // save cmd so we know how to convert result  
 TMR0 = 0; 
 TMR1H = 0; 
 TMR1L = 0;  
 timeout = 0;  
 tone_cnt = 3;  
 index = 2;  
 TMR1ON = 1;  
 TMR2 = 0; 
 TMR2IF = 0;  
 gaincnt = gain; 
   



 while(timeout==0) {       // while still timing 
stage3 
  while(timeout==0 && echo==0) {  // wait for high  
   if(TMR2IF && gaincnt) {  
    pot_ud = 1;  
    --gaincnt; 
    TMR2IF = 0;  
    pot_ud = 0;  
   } 
  }     
  while(timeout==0 && echo==1) {  // wait for low 
   if(TMR2IF && gaincnt) {  
    pot_ud = 1;  
    --gaincnt; 
    TMR2IF = 0;  
    pot_ud = 0;  
   } 
  }     
   
  if(timeout==0) { 
   period = TMR0;  
   TMR0 = 0; 
   if(period>40 && period<60) { 
    if(!(--tone_cnt)) { 
     do { 
      buffer[index] = TMR1H; 
      buffer[index+1] = TMR1L;  
     }while(buffer[index] != TMR1H);  
      
     convert(cmd, index);   // convert to in, cm or uS 
     if(index == 36) return;  
     index += 2;  
     tone_cnt = 3;  
     period = 0;  
     while(--period){    // d elay 
about 5 inches of range 
      if(TMR2IF && gaincnt) {  
       pot_ud = 1;  
       --gaincnt; 
       TMR2IF = 0;  
       pot_ud = 0;  
      } 
     } 
     while(--period){ 
      if(TMR2IF && gaincnt) {  
       pot_ud = 1;  
       --gaincnt; 
       TMR2IF = 0;  
       pot_ud = 0;  
      } 
     } 



     while(--period){ 
      if(TMR2IF && gaincnt) {  
       pot_ud = 1;  
       --gaincnt; 
       TMR2IF = 0;  
       pot_ud = 0;  
      } 
     } 
    } 
   } 
   else tone_cnt=3;  
  } 
 } 
}     
 
       
//////////////////////////////////////////////////////////////////// 
 
 
void ann_range(void) {  
 
unsigned char tone_cnt, period, index, cmd; 
 
 burst();   // send 40khz burst and clear buffer 
  
 cmd = command;  // save cmd so we know how to convert result  
 TMR0 = 0; 
 TMR1H = 0; 
 TMR1L = 0;  
 timeout = 0;  
 tone_cnt = 3;  
 index = 2;  
 TMR1ON = 1;  
 
 while(timeout==0) {       // while still timing 
stage3 
  while(timeout==0 && echo==0) {  // wait for high  
   if(TMR2IF) { 
    pot_ud = 1;  
    TMR2IF = 0;  
    pot_ud = 0;  
   } 
  }     
  while(timeout==0 && echo==1) {  // wait for low 
   if(TMR2IF) { 
    pot_ud = 1;  
    TMR2IF = 0;  
    pot_ud = 0;  
   } 
  }     
   



  if(timeout==0) { 
   period = TMR0;  
   TMR0 = 0; 
   if(period>40 && period<60) { 
    if(!(--tone_cnt)) { 
     set_bit(TMR1H); 
     if(index==2) {     // only 1st echo in 
ann mode 
      do { 
       buffer[index] = TMR1H;  
       buffer[index+1] = TMR1L;  
      }while(buffer[index] != TMR1H);  
      convert(cmd, index);   // convert to in, cm 
or uS 
      index += 2;  
     } 
     tone_cnt = 1;    // to detect 
continuing echo  
    } 
   } 
   else tone_cnt=3;  
  } 
 } 
}     
     
 
 
void set_bit(unsigned char idx) 
{ 
char pos;  
 
 pos = idx&7;    // lower 3 bits indicate bit position 
 idx = (idx>>3)+4;    // index into buffer 
 switch(pos) { 
  case 0: buffer[idx] |= 0x01; 
     break; 
  case 1: buffer[idx] |= 0x02;  
     break; 
  case 2: buffer[idx] |= 0x04;  
     break; 
  case 3: buffer[idx] |= 0x08;  
     break; 
  case 4: buffer[idx] |= 0x10;  
     break; 
  case 5: buffer[idx] |= 0x20;  
     break; 
  case 6: buffer[idx] |= 0x40; 
     break; 
  case 7: buffer[idx] |= 0x80;  
     break;      
 } 



} 
 
 
//////////////////////////////////////////////////////////////////// 
 
 
void convert(unsigned char cmd, unsigned char idx) 
{ 
unsigned int x;  
 
 x = (buffer[idx]<<8) + buffer[idx+1];  
 switch(cmd) { 
  case 0x80: 
  case 0x83: x /= 148; // convert to inches 
      break; 
  case 0x81: 
  case 0x84: x /= 58;   // convert to cm 
 } 
 buffer[idx] = x>>8; 
 buffer[idx+1] = x&0xff;   // replace uS with inches, cm or uS 
} 
 
 
 
//////////////////////////////////////////////////////////////////// 
 
 
void setup(void) 
{ 
// _CONFIG(0x0d42);   // code protected, hs osc 
 __CONFIG(0x3d72);    // code not protected, hs osc 
  
 ADCON1 = 0x0e;    // PortA 0 is analog, rest are digital 
  
 ADCON0 = 0x41;     // conve rt ch0 
 PORTC = 0xff;     // nothing powered at start 
 TRISA = 0xff;    // All inputs 
 TRISB = 0xc3;    // 11000011 PB7,6,1,0 are inputs, rest are 
outputs  
 TRISC = 0x18;     // 00011000 RC3,4 are inputs 
 OPTION = 0x08;     // portb pullups on, prescaler to wdt 
 T1CON = 0x10;     // timer1 prescale 1:2, but not started yet 
 T2CON = 0x04;     // 1:4 prescale and running  
// T2CON = 0x06;     // 1:16 prescale and running  
 PR2 = 140;      // set TMR2IF every 280uS at 8MHz 
 SSPSTAT = 0x80;    // slew rate disabled 
 SSPCON  = 0x36;   // enable port in 7 bit slave mode 
 SSPCON2 = 0x80;   // enable general call (address 0) 
 SSPADD  = EEPROM_READ(5); // address 0xE0 - 0xFE 
 if(SSPADD<0xE0) 
  SSPADD=0xE0;    // protection against corrupted eeprom 



 else SSPADD &= 0xfe; 
 buffer[0] = version;  // software revision 
 SSPIE = 1;      // enable I2C interrupts  
 TMR1IE = 1;     // enable timer1 interrupts 
 TMR1IF = 0;  
 SSPIF = 0;  
 PEIE = 1;      // enable peripheal interrupts 
 GIE = 1;       // enable global interrupts 
 gain = 32;     // ma ximum gain at power-up 
} 
 
 
//////////////////////////////////////////////////////////////////// 
 
 
void flash_addr(void) 
{ 
unsigned char count; 
long delay, on, off;  
 
 on = off = 30000;  
  
 count = ((SSPADD>>1)&0x0f)+1; 
 do { 
  delay = on;  
  on = 10000; 
  led = 0;     // led on  
  while(--delay) if(command) return;  
  delay = off;  
  off = 20000; 
  led = 1;     // led off 
  while(--delay) if(command) return;  
 } 
 while(--count);  
} 
 
 
 
//////////////////////////////////////////////////////////////////// 
 


